PARALLEL COMPUTING
AT THE DESKTOP

Aaron Smlth — I\/Iarch 2015 GSPS

Outline

Why Parallel?
Closer Look (@

Hardware

Software
Language Considerations
Parallel Paradigms
Example Code

Serial

MPI

OpenMP

Why parallel?

>> Speed up code [processing power]
Slow is relative (minutes/days/months)

>> Share the workload [big/distributed data]
Big is relative (MB, GB, TB)

= — -
= — -

Aaron Smith | UT Austin | Parallel Computing at the Desktop

Amdahl’s Law

>> Serial sections limit the parallel effectiveness

1
fo+f./p

Speedup =

f. = serial fraction

f, = parallel fraction
p = number of processors

——
== —_—
—_—

Aaron Smith | UT Austin | Parallel Computing at the Desktop

What resources do you have?

Hardware

>> Know the basic architecture.

>> What exactly is multi-core?

CPU = Central Processing Unit

SMP = Simultaneous Multiprocessing

CMP = Chip-level Multiprocessing
Big pool of slower cache and
separate fast memory/cycles

SMT = Simultaneous Multithreading

e.g. quad-core, hyperthreaded processors
Effectively 2x4x2 — lower latency

>> Distributed and Shared Memory
What processor owns the data?
Race conditions and other problems
Communication overhead / bottlenecks

Software

>> Compilers are smart!
We don’t have to try as hard.

>> Who's developing?
Open source community
Well-established standards

>> Version Control (git/hg)
>> Documentation

>> User-friendliness
Unified codebase

Trustworthy
Unit Testing
Installation

Languages...

Multi Processor (aka Multi CPU)

Board with 4 Processors:

Wha.

>> What exacthf;.]

SMT = Simultanec
e.g. quad-core, hy
Effectively

>> Distributed ¢
What processor o
Race conditions al
Communication o

The Language Landscape

Compiled VS.

>> C/C++ and FORTRAN

>> Code is reduced to machine-
specific instructions (executable)

>> Faster runtimes, easy to optimize
>> Low-level access to data structures

>> Less flexible -- static types

Just-In-Time (JIT)

>> Julia — smart compiler, still under
development, read the docs
thoroughly to avoid pitfalls

Interpreted

>> Python, Java, C#, bash

>> Code is saved as written and
must be translated at runtime.

>> Faster develop times
>> Convenient high-level functions

>> Extra freedom — dynamic types,
type checking, extra information

>> Web-based applications (Java)

>> 0ngoing development & support

Paradigms in Parallel Programming

1.
2.
3.
4.
5.
6.

Run several serial programs

e.g. shell scripting — not processor or memory limited

Message-Passing Interface (MPI)

STANDARD — “necessary” for large clusters and supercomputers

Open Multi Processing (OpenMP)

STANDARD - incremental parallelization, easy, shared memory

Hybrid Programming

Important enough to be it’s own category — more memory & processors

Graphics Processing Units (GPU)

Very efficient for certain kinds of operations but not everything

Useful but more obscure methods

Native to languages, architecture-centric, many integrated cores (MIC) ...

Example:
MC integration

4 x # Hits
Attempts

Aaron Smith | UT Austin | Parallel Computing at the Desktop

H H R R

<stdio.h>

Zetdlib.ho Example: Serial

<time.h>

AR MC integration

int main (int argc, charx argvl[])

{

double x, y, r, pi;
int 1, count = 0, niter = 1e8;
srand(time(NULL));

(i=0; i< niter; ++i)

{
X = (double)rand() / RAND_MAX;
y = (double)rand() / RAND_MAX;
r = sqrit(xkx + yxy);
(r<=1) ++count;
ks

pi = 4.0 x ((double)count / (double)niter);
printf("Pi: %f\n", pi);
0;

Aaron Smith | UT Austin | Parallel Computing at the Desktop

Example: Serial
i‘nt main (int argc, charx argvl[]) MC integraﬁan

srand(time (NULL));

(i=0; i< niter; ++i)

pi = 4.0 x ((double)count / (double)niter);

printf("Pi: %f\n", pi);

0;

Aaron Smith | UT Austin | Parallel Computing at the Desktop

“mpih” Example: MPI
(argc, x argv[]) MC integraﬁcn

int my_rank, process;

int total_count, total_niter;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &process);
(()k (my_rank+17887527)) ;

(i=0; i < niter; ++1i)

MPI_Reduce(&count, &countT, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD) ;
MPI_Reduce(&niter, &niterT, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD) ;
pi = * (()countT / ()niterT);
(!'my_rank)

("Pi: ", pi);

MPI_Finalize();

’

Aaron Smith | UT Austin | Parallel Computing at the Desktop

<onp. ho> Example: OpenMP
Lot aree, cearavi - VIC Integration

omp parallel
{
int my_rank = omp_get_thread_num();
int process = omp_get_num_threads();
(()k (my_rank+17887527)) ;

omp for private(x, y, r, i) reduction(+:count)
(i=20; i< niter; ++i)
{ }
}
pi = * (()count / ()niter);

("Pi: ", pi);

Aaron Smith | UT Austin | Parallel Computing at the Desktop

Summary

Likely number of cores
on your desktop: 4
Likely number of cores
on local cluster: 16+
Is the effort worth 1t?
Many codes have already
done the work for you.
Additional resources
TACC
Fellow students

