
Software Design for Astronomers

Brian W. Mulligan
University of Texas at Austin

Grad Student – Post-Doc Seminar
University of Texas at Austin
15 Sept. 2017

2

My Bio

3

Plan for this talk

Source control & github

Purpose

Input

Output

Packages / Modules / Libraries

4

Plan for this talk

Source control & github

Purpose

Input

Output

Packages / Modules / Libraries

5

Source Control & github

Source control & github 1/2

Source Control

Backs up changes to the code over time

Allows tracking changes and the purpose for the changes

Allows reversion to previous versions

6

Github: sharing your code

Generally free

As a student, eligible for free private repositories

Share your code with collaborators

Repository for your code used in papers

Source control & github 2/2

7

Plan for this talk

Source control & github

Purpose

Input

Output

Packages / Modules / Libraries

8

Questions to ask

Does software to do this already exist?

If it does, how complicated is it to make it do what you want to do?

How often do I need to do this task?

Will I need to do it again in the future?

How complex is the task?

How time-consuming is coding, debugging, and
processing vs. manual operation?

Purpose 1/4

9

Graphing

Purpose 2/4

IDL
just don’t

Python – pyplot
Useful for one-off code, a handful of plots, or something that can be

done in a short time

C – pgplot
Basis of pyplot, going to run a lot faster than python. Useful for a

large number of plots or large datasets

FORTRAN – pgplot
basically the same as C

Other
Postscript – skip the intermediary and write your own .ps files; can

be done from any language – this is all that pyplot / pgplot does.
gnuplot, other utilities – probably similar to using python.

10

Fundamental models

Purpose 3/4

Welcome Software Hello

Welcome
Software Добро пожаловать!

Translation

Manipulation

11

Purpose / complexity

Generate simple plots or tables?

 (Translation model)

Convert data from one format to another?

 (Translation model)

Perform calculations on data

 (Manipulation model)

Design 4/4

12

Plan for this talk

Source control & github

Purpose

Input

Output

Packages / Modules / Libraries

13

How to access your data

Assume: data in (set of) files

Avoid hard coding inputs unless they never
change

User inputs via:

command line / typed user input

graphical user interface

Parameter files

Input 1/5

14

Command line

Provide parameters to command when running the code

g++ -c source.cpp -o source.o –std=c++11

Highly flexible and allows user to specify only parameters that
are needed.

Requires string processing in code to translate potentially
obscure command line options to meaningful information.

Very suitable for scripting

Useful when there is only a handful of parameters

Input 2/5

15

stdin

Provide parameters via stdin
imstat

List of input images (HIP62157_firstpointing-0001_V.fit):

Useful for code that is run a few times manually

Can make use of redirecting stdin so all parameters
can be stored in one or more files.

Using stdin means unformatted parameter files – not
particularly user friendly

Input 3/5

16

Parameter files

Store parameter information in a formatted file

Parameter file with fixed filename (don’t do this!) or via
command line

Formats:

xml: broadly used standard, lots of code available for processing

json: starting to come into broad use; features similar to xml, but not as
verbose

yaml: similar to json or xml, but a little more limited; not as widely used

Parameter list:

parameter_a = 1

parameter_b = whats up?

Requires more intensive string processing in your code, but pretty easy to read

Input 4/5

17

Data input

What storage format is the data in?

What format do you need it in your code?

These two questions should guide you to appropriate data structures and
libraries / packages for reading the data.

Do you need all of it all the time?

For large datasets, you’ll probably only want to load what you need when
you need it.

Reading from disk is really slow.

How much memory / space is required for the data?

What order will you access the data?

For large datasets, be aware of access order – you want to make sure that
access is ordered the same as storage.

Input 5/5

18

Plan for this talk

Source control & github

Purpose

Input

Output

Packages / Modules / Libraries

19

Final products

Human readable?

Machine readable?

Both?

Graphs?

LaTeX tables?

Output 1/3

20

Machine Readable files

Xml, json, .csv, others

Maintain precision of floating point data?

Single precision: 8 digits

Double precision: 17 digits

Binary machine readable?

Most compact format

Can cause problems if data is transferred from one computer to
another

Output 2/3

21

Intermediate products?

Storage of intermediate state of processed data

Useful if processing is intensive

Allows restart in case of crash

Usually machine readable format

Format is highly dependent on usage

Consider SQL

Other intermediate data

Information regarding the analysis results

Effectively an output product

Output 3/3

22

Plan for this talk

Source control & github

Purpose

Input

Output

Packages / Modules / Libraries

23

Modules & Libraries

What components of your code do you expect to re-use?

Do you find yourself regularly re-using a piece of code with
small changes?

Can those components be written in a way to be usable in
different contexts?

Functional or object oriented programming

Helps prevent errors and allows fixing bugs in a global manner.

Find bug in a piece of code, if it’s in a library, fix it once, otherwise fix it 10 times.

Libraries 1/X

24

Interface design

What parameters are required?

What parameters are optional?

Many modern languages allow optional paramters to have a default value

void thisfunction(int a, int &b, int c = 10)

Consider grouping parameters into a container

Highly flexible method of supplying paramters

class params

{

 public:

 int a;

 int b;

 int c;

 params(void) {c = 10;}

};

void thisfunction (params Params);

25

Github!

Place your modules / libraries / packages on
github – other people can now use them!

Remember to provide some documentation to
users so they know how to use the code (and
you remember when you come back to it a year
later)

Github.com/astrobit/xlibs

26

Summary

Consider usage and scope of task

Set up inputs to be easy to control, avoid hard-coding
(fixed) inputs

Outputs as needed – consider language

Create libraries / modules to avoid errors and copy /
paste

Use github and share your work!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

