
# Giving a science research talk How to (and to not) leave your audience behind

Brian W. Mulligan University of Texas at Austin

Grad Student – Post-Doc Seminar University of Texas at Austin 4 Nov. 2016

# Background

- □ There is a joke that goes: A kangaroo kept getting out of his enclosure at the zoo. Knowing that he could hop high, the zoo officials put up a ten-foot fence. He was out the next morning, just roaming around the zoo. A twenty-foot fence was put up. Again he go out. When the fence was forty feet high, a camel in the next enclosure asked the kangaroo, "How high do you think they'll go?" The kangaroo said, "About a thousand feet, unless somebody locks the gate at night!"
- Out this zoo all the animals are happy and healthy. We take great care of them!



$$\begin{split} \nabla^2 c &= \kappa^2 c, \\ \partial c_{\rm a}/\partial t &= [J_{\rm a}^1 \alpha(c,c_{\rm a}) + J_{\rm a}(c_{\rm a})\beta(c,c_{\rm a})]R \\ &+ D_{\rm a} \nabla^2 c_{\rm a} - k c_{\rm i} c_{\rm a} \\ \partial c_i/\partial t &= D_{\rm i} \nabla^2 c_{\rm i} - k_{\rm a} c_{\rm i} c_{\rm a} + J_{\rm i}(c,c_{\rm a})\beta(c,c_{\rm a})R \\ \partial R/\partial t &= [D_{\rm cell} - (\lambda + \lambda_2 \gamma(c,c_{\rm a}))R] \nabla^2 R \\ &- \lambda_2 \partial \gamma/\partial c_{\rm a} R^2 \, \nabla^2 c_{\rm a} - \lambda_2 \partial \gamma/\partial c R^2 \nabla^2 c \\ &+ r R(R_{\rm eq} - R) - k_{23} \gamma(c,c_{\rm a})R. \end{split}$$

Things to think about beforehand

**Creating slides** 

**Organizing talk** 

### Things to think about beforehand

**Creating slides** 

**Organizing talk** 

# Don't wing it



Plan your talk



Define your goals





# Be aware of your audience



**Undergrads?** 

Your sub-sub field, sub field, or anyone? Their entire attention may not be on you Have they heard similar talks before?

Things to think about beforehand

### **Creating slides**

**Organizing talk** 

# Slide design



Illustrate concept

**Provide data** 

**Don't make audience read** 

Keep audience aware of where you are

# **Equations may be OK**

$$f(x) = \alpha e^{\left(\frac{-x^2}{2\sigma^2}\right)} + \sinh\left(\theta k_B T\right) - (1+z)^{\beta} \Omega_{\Lambda}$$

$$f(x) = [Spatial] + [Thermal] - (1+z)^{\beta} \Omega_{\Lambda}$$

Alpha = ...

X = position

Sigma = ...

Theta  $= \dots$ 

k b = Boltzman constant

T = temperature

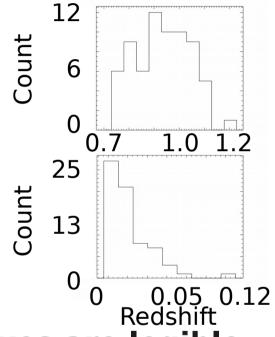
Z = redshift

Beta = D.E. dep. On redshift

Omega Lambda = D.E.

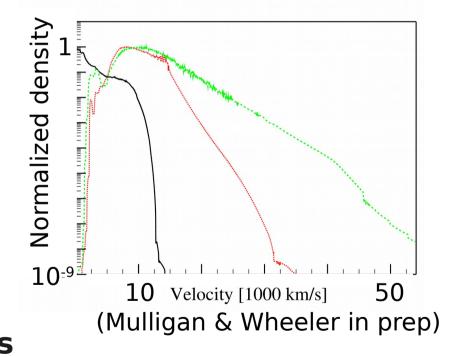
energy density .....

### Do you refer to it later?


What variables / terms are actually important?

Describe every variable unless you're sure everyone knows them.

## **Graphs and plots**


Times-streeted is cacted fractors band

(Nobili & Goobar 2008)



Make sure that axes are legible 16-20 pt text for axes Use easy to understand axis labels

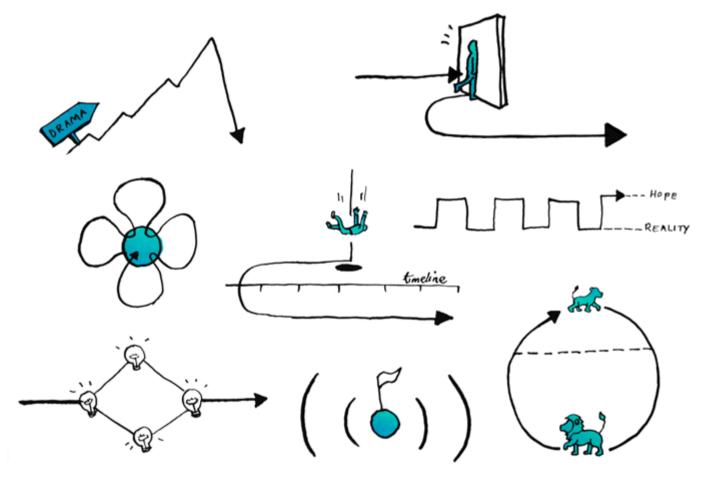
Use line style & thickness in addition to color



## **Videos & Images**






Just because you can doesn't mean you should.

Things to think about beforehand

**Creating slides** 

**Organizing talk** 

# Tell a story

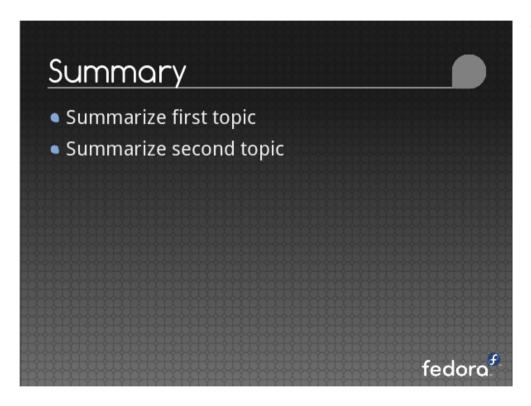


Narrative techniques help guide the brain

Provide framework that can help understanding and highlight important points

http://www.sparkol.com/engage/8-classic-storytelling-techniques-for-engaging-presentations/

## Be repetitive


Repetition is the mother of all learning.

Reinforces concepts

Helps audience if they're not fully engaged

Helps if audience isn't familiar with (sub-sub-) field

# Have a summary slide



Might not have time to give verbal summary.

Emphasize main points in case audience missed them.

Reinforce main points.

# What can (will) you skip?



Things to think about beforehand

**Creating slides** 

**Organizing talk** 

# Be aware of your nervous tics

### Verbal ticks?

"So"

### **Kinetic tics?**

Pacing, gripping podium / etc.,

### **Best method**

record yourself and watch the video

# Check out Rice U. ComCoach



"Of course you're allowed to have stage fright.

As soon as your talk is over."

http://www.ruf.rice.edu/~comcoach/

### **Practice Talks**



### Self

### **Small Group**

Get critical feedback in realtime

### **Iteration**

### **Summary**

#### **Preparation**

Audience, Goals, stuff to skip

#### **Slide Design**

Use slides to emphasize / illustrate points

Make slides, equations, and graphs easy to digest

#### **Organization**

Provide a narrative
Keep reminding audience what you are talking about
Include a summary

#### **Giving your talk**

Be aware of your nervous habits