

Why does my code take a week to run?
Optimizing and profiling your code

slides available at
http://www.as.utexas.edu/~bwmulligan/GSPS_Profiling.pdf

Brian W. Mulligan
UT Austin
Grad. Student & Post-doc seminar
4 Mar 2016

http://www.as.utexas.edu/~bwmulligan/GSPS_Profiling.pdf

Hands-on

The best way to learn is to do it.

For this talk, each task / component will be
accompanied with examples for you to run /
test on your own computer.

Examples in c++ & python

Disclaimer

Some of the information given here may not be valid
in non c/c++ based languages (python and java are
c/c++ based).

There may be particular tricks or methods that may
not apply to other languages.

I work almost exclusively from command line when
running / compiling. Using Jupyter or browser based
stuff may be a bit different.

Outline

● Simple profiling
● Common simple optimizations
● Advanced profiling

Simple profiling

● Use time to measure how long a program
takes to run

● Use high-precision timing routines to
measure individual subroutines or
components

● Use medium precision timing routines and
do something a lot of times

Using time

$time sleep 2

$time multitest

Gives clock time (0:02.04, 0:08.10) required to
run, as well as CPU processing load (8.029u)

(sleep doesn't load the CPU)

0.000u 0.001s 0:02.04 0.0% 0+0k 64+0io 1pf+0w

8.029u 0.005s 0:08.10 99.0% 0+0k 32+0io 0pf+0w

Using timers

Python

Import time

start=time.time()

[code to time here]

runtime=time.time() start

~millisecond accuracy

c++

#include <ctime>

double time(void)

{

timespec tTime_Curr;

clock_gettime(CLOCK_MONOTONIC_RAW,&tTime_Curr);

return (double)(tTime_Curr.tv_sec + tTime_Curr.tv_nsec
* 1.0e9);

}

double start,runtime;

start = time();

[code to time]

runtime=time() start;

~nanosecond accuracy

Templates available:
www.as.utexas.edu/~bwmulligan/timing_template.cpp
www.as.utexas.edu/~bwmulligan/timing_template.py

Hint for testing timing

● When working with simple routines, try to avoid using
constant inputs
– Compilers / interpreters may automatically optimize the code

● Use random number inputs instead.

import random

x = random.random() * random.random()

#include <stdlib.h>

x = rand() / (double)(RAND_MAX);

Optimization:
print statements

Get rid of print statements
– Print, printf, cout <<, etc.

Console output is horribly slow. The less output the faster your
code will go.

Example:

Create two for loops, one which performs an operation such as x =
exp(random.random()), and one which does the same operation and
prints the result every time. Do at 10000 iterations of each loop.

Compare the execution time of the two loops.

Optimization:
loops

Combine consecutive for loops that have the same or similar range

e.g.

for i in range (1,1000):

x = 1 + a

for i in range (1,1000):

y = 4.3 * b

for i in range (1,1000):

z = exp(c)

Example: create the three for loops above, with a,b, and c as random
variates. Determine the time to execute the three loops separately, then
time them combined into a single loop

Optimization:
order of data

When working with large datasets, access the data in the order it is
stored.

C based languages store in “row first” order (i.e. a[0][0], a[0]
[1], and a[0][2] are contiguous in memory, a[0][0] and a[1]
[0] are separated by the width of a)

Example: create a set of nested loops that fill a large (1024x1024)
array with random numbers in [i][j] order, and another in [j][i] order
and compare the time to complete the task.

Note: FORTRAN is “column first”.

Optimization:
minimize math operations

Floating point operations are expensive, especially divides.

Remove constant sets of operations from inside of loops or blocks of code

i.e.

for i in range(1,1000):

vol = 4 * math.pi / 3. * r ** 3

Better:

c = 4 * math.pi / 3.

for i in range(1,1000):

vol = c * r ** 3

Example: Test the above two methods for computing a volume, with radius
as a random variate

Optimization:
Don't use ** or pow

The ** or (math.)pow are expensive operations,
equivalent to about 10-100 FLOPS

When performing integer power operations, multiply
them out.

e.g.

x = pow(z,5) // slow

x = z * z * z * z * z // fast

● Example: try the above two methods of computing z5

Optimizing:
Don't use python

Equivalent c/c++ program is 100-1000x faster than python.

If the code takes more than 5m to run and is being used often and/or
by many people, write it in c/c++ or FORTRAN

If the code is a “one-off” but takes more than 10-15m to run, will
probably be better in c/c++ (depends on how much longer it will take
you to write c/c++ code).

numba can create a compiled version of a python program; significant
speedup running this instead of through python interpreter.

Optimizing:
Don't spin your wheels

Focus on high gain tasks when optimizing.

e.g. Memory access order is way more important than a for
loop with 10 iterations and an unnecessary divide.

Look for subroutines that are called a large number of times,
large arrays, or for loops that are nested or have many
iterations.

Use a profiler to help identify the code to focus your effort on.

Profiling

Report the frequency of usage and/or CPU
time used by individual components /
modules

Outputs:
– % of total time spent in a given subroutine

– Time spent in a subroutine

– # of calls to a subroutine

– Call history of subroutine

Example (gprof)

How to use profiling data

Look for functions called large # of times and
using significant fraction of total time.

If the subroutine is small, replace function call with
code – save f.c. overhead.

If subroutine is large, apply methods discussed earlier.

Look for functions called few times but using a
significant fraction of total time.

How to profile

C++:

Compile:
g++ g program.cpp o program pg

Run:
run program as usual. Gmon.out will be created.

Profile:
gprof program

Python:
python m cProfile program.py

Note: gprof and cProfile are “default” profilers. There are many others available that you may like better
that may give their output in a more user-friendly way.

Exercise: profile and optimize

http://www.as.utexas.edu/~bwmulligan/prof_ex.py

http://www.as.utexas.edu/~bwmulligan/prof_ex.cpp

C++ specific

Pass by reference instead of by value for classes or doubles
pointer (reference) = 4 bytes (32-bit systems) or 8 bytes (64-bit systems)

double = 8 bytes

class = n bytes (n probably >> 8)

Avoid allocating and deallocating memory
perform new and delete ops as infrequently as possible

use stl (map, vector, string, etc.)

Don't write your own operator = if you don't have to

Avoid casting from int to double and vice versa

arrays that are sized in multiples of 512 (for doubles) or 1024 (for
int) can be slightly more efficient

Things to try at home

● Compare integer and floating point math.
● Compare various math functions (e.g. exp, pow, log,

sin, etc.).
● Compare matrix operations using manual code, numpy,

blas, linpack, or your other favorite linear algebra
package.

● Compare saving data in memory then dumping to a file
vs outputing small blocks to file as you go.

http://www.as.utexas.edu/~bwmulligan/prof_ex.py
http://www.as.utexas.edu/~bwmulligan/prof_ex.cpp

Additional resources

C++ optimization suggestions

http://www.tantalon.com/pete/cppopt/main.htm

python optimization suggestions

https://wiki.python.org/moin/PythonSpeed/PerformanceTips

Use numba or numpy

http://numba.pydata.org/

http://www.numpy.org/

Profilers

https://en.wikipedia.org/wiki/List_of_performance_analysis_tool
s

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

