

If you don't know who I am:

My science shtick is planet formation & exoplanet detection.

I'm also very interested in outreach, especially when it doesn't involve me physically standing in front of an audience.

Systemic: One Software Package to Rule Them All

What is Systemic?

Systemic is an open-source software package for analyzing and modelling exoplanetary time series (primarily Radial Velocities and transit timing)

Systemic: One Software Package to Rule Them All

What is Systemic?

Systemic is an open-source software package for analyzing and modelling exoplanetary time series (primarily Radial Velocities and transit timing)

What is "All"?

Systemic: One Software Package to Rule Them All

What is Systemic?

Systemic is an open-source software package for analyzing and modelling exoplanetary time series (primarily Radial Velocities and transit timing)

What is "All"? • Science

Teaching & outreach
A fun treat

Collaborators:

Greg Laughlin, Russell Hanson, Jenn Burt, Steve Vogt (UCSC), Paul Butler (Carnegie), Joel Green (UT)

Systemic 2 http://www.stefanom.org/systemic

Meschiari+ '09, '10, '11, Meschiari+ '14 (in prep.)

Model statistics

(Chi², log likelihood, etc.)

								Alter and the second second second	
000	Systemic 2					¥	A Quartz 2		
S- 🖈	Ready.			Minimize 🔻					
KERNELS	+	Type cucortar()	CO VIEW & DITEL CUCOLIAL.	RV S	SIGNAL	BY PLANET	eriod of p	olanet 1 vs Period of planet 2	
🗠 k		=> kremove.data	(k, 'all'); k\$mstar <- 0.950000; k\$epoch		10 E				
PROPERTIES		"./datafiles/HD	115617_KECK.vels"));		8		F	\sim	
# Planets Star mass [M_]	3 0.95	=> kminimize(k)			6	· • • • • • • • • • • • • • • • • • • •	-	0.95	
Epoch [JD]	2453369.16	$=> b_1 <- kmcmc$	<pre>(k, chains=2, R.stop=1.1, skip.</pre>	-	4		<		
Chi ²	1759 78016	Final length: 5	card=k\$nrpars*10, print=TRUE) 236, final R max = 1.065146e+00, final	[m/s	2		5		
RMS _{PV} [m/s]	2.16691	Rsingle_max = 1	.488546e-01	1	0				
Jitter [m/s]	2.04813	perturb, noise=	TRUE, skip = 1000, discard = 170, tot.	lane	-2		-	0.99 5	
# RVs	183	length = 10472		–	-4				
Chi ² TT	0	<pre>plot(b_1, type= v=list('par'.'d</pre>	'scatter', px=list('par','data.noisel'), p		-6	·••••	37.80	37.90 38.00 38.10	
RMS _{TT} [d]		'Jitter, AAT',	ylab='Jitter, KECK')		-8				
# TTs	0				-10 E			Period of planet 1	
Chi ²	1759.78016	ORBITAL ELEMENTS	Dianet 1 Y Dianet 2 Y Dianet 2 Y			0 7 14 21 28 35 Phase			
Chi ² reduced	10.60109		Planet 1 ∧ Planet 2 ∧ Planet 3 ∧ 38,03334 ▷ ○ 4,21492 ▷ ○ 121,55729		F			Quartz 3 [*]	
-Log likelihood	797.00126	Period [d]			12				
# Data	183	Mass [Mj]			8	· · • · • · • • • • • • • • • • • • • •	Jitter	, AAT vs Jitter, KECK	
Norm. par.	17	Mean anomaly [deg]			6			1. Contract (1. Co	
Int. Method	KEPLER -	Eccentricity		u/s]	4		· · ·		
Min. Method	SIMPLEX -	Long. Peri [deg]		2					
Element type	ASTROCENTF -	Inclination [deg]		anel	-2				
		Node [deg]		Ē	-4				
		Semi-maj. axis (AU)			-6	t • 1 👔			
\bigcirc		Semiamplitude [m/s]	2.24459 2.83278	-	-10	•	-		
		Radius [Rj]		-	-12				
	IJ					0.0 0.8 1.6 2.4 3.2 4.0	1.0	15 20	
		H DATA PARAMETERS			-	Phase			
	W HD115617 × W HD115617 ×			. 1			Jitter, AAT		
<u>1 AU</u>		0.2344	0.9892		w	□ · · · · · · · · · · · · · · · · · · ·			

Model statistics

Command line

(Chi², log likelihood, etc.)

								the second second	
000		Sy	stemic			R _M	Quar	tz 2	
💽 - 🖈	te d'		Ready.			Minimize 🔻			
KERNELS	+	Type cucortar() to view a brief cucortar.		RV SIG	NAL BY PLANET		eriod of planet 1	vs Period of plane	et 2 🚺
🗠 k		=> kremove.data(k, 'all'); k\$mstar <- 0.9	50000 \$epoch	1	۰ E	·····] [1		
PROPERTIES		<pre><- NaN; kadd.data(k, c("./datafiles/HDI156 "./datafiles/HD115617_KECK.vels"));</pre>	SI7_AA .vels ,		8 4			\sim	
# Planets Star mass [M_]	3	=> kminimize(k)			6 - - - - - - - - - -	1		0.95	
Epoch [JD]	2453369.16	<pre>[1] 10.00109 => b_1 <- kmcmc(k, chains=2, R.stop=1.1, s</pre>	skip.	-		+ + 4	0/55		
Chić	1750 78016	<pre>first=1000, discard=k\$nrpars*10, print=TRU Final length: 5236, final R max = 1.065140</pre>	JE) Se+00, final	[m/s	2	14			
RMS _{PV} [m/s]	2.16691	Rsingle_max = 1.488546e-01	chart -	11					2
Jitter [m/s]	2.04813	<pre>perturb, noise=TRUE, skip = 1000, discard</pre>	= 170, tot.	. ane	2			0.99 5	1
# RVs	183	length = 10472		₽.		' <u>'</u> + -			
Chi ² TT	0	<pre>plot(b_1, type='scatter', px=list('par', 'o y=list('par', 'data poise?') dev factor=5</pre>	data.noisel'), p	-	6 • • • • • • • • •	1 +	37.80 37.90	38.00 38.10	
RMS _{TT} [d]		'Jitter, AAT', ylab='Jitter, KECK')	, pen , xiab-		8	1			
# TTs	0			-1	0		Period	of planet 1	
Chi ²	1759.78016		N Direct 2 N		0 7 14 21 28 Phase	35			
Chi ² reduced	10.60109		x Planet 3 x		Filase	····	Quartz	3 [*]	
-Log likelihood	797.00126	Period [d]	N 0 0 06255	1		1			
# Data	3.6982e-13 183	Mass [Mj]	0.06255		8	-	Jitter, AAT v	s Jitter, KECK	
Norm. par.	17	Mean anomaly [deg]	> P 0 40.30038		e E IIIIIII				1
Int. Method	KEPLER T	Eccentricity	► 0.34807	ls/u		• • 1			3
Min. Method	SIMPLEX *	Long. Peri [deg]	▶ • 311.42328	2 [n			a where		
Element type	ASTROCENTF -	Inclination [deg]		anet					
		Node [deg]		Ξ.					
		Semi-maj. axis [AU]	0.4/212		6				
		Semiamplitude [m/s] 3.68719 2.24459	2.83278	-1	o =	1	-		
\bigcirc		Radius [Rj]		-1	2		L		
					0.0 0.8 1.6 2.4 3.2	4.0	10 15	2.0	
		DATA PARAMETERS	+		Phase		1.0 1.0	2.0	
wr HD115617 × wr HD1		wr HD115617 × wr HD115617 ×					Jitte	er, AAT	1
<u>1 AU</u>		● 0.2344 ● 0.9892			💵 💿 사 🛈 🛧 🎆 Editor	Pars			
						and the second second		1.	

Model statistics Command line

Plots (interactively updated)

Model statistics Command line

(Chi², log likelihood, etc.)

Plots (interactively updated)

Orbital plot

Model statistics Command line

(Chi², log likelihood, etc.)

Plots (interactively updated)

Orbital plot Model parameters

Dynamical fitting

Models can optionally include gravitational interactions between bodies:

(1) Fit strongly interacting/resonant systems (e.g. GJ876, HD128311, etc.)

(2) Check for the long-term stability of a planetarysystem and create stabilitymaps

Dynamical fitting

(3) Fit transit timing datasets combined with radial velocity datasets and take advantage of transit timing variations to constrain orbital elements.

- Lomb-Scargle and bootstrapped periodogram
- Keplerian and self-consistent fitting
- Long-term integration using SWIFT
- •Optimization using Simplex, Levenberg-Marquardt, Simulated Annealing or Differential Evolution
- Error estimation using Markov-Chain Monte Carlo or bootstrap
- Model cross-validation using jack-knife
- •Completely customizable models (e.g., add new parameters to the model)
- •Algorithms are automatically parallelized to run across multiple cores; some algorithms can run across computing clusters
- •And more!

It'll be quick, I promise!

Systemic is also an R package.

This means that you can write fullfledged scripts to analyze your data, and interface with literally thousands of sophisticated statistical packages.

Computations are parallelized and can be run across clusters.

Load data, add a planet and run a Markov-Chain Monte Carlo algorithm.

```
# Creates a new model object
k <- knew()
# Load new data
kadd.data(k, "1pl.vels")
# Calculate the power spectrum of the data
p <- kperiodogram(k)</pre>
```

```
# Add a planet at the period corresponding
# to the highest peak
kadd.planet(k, c(period = p[1, 'period']))
kminimize(k)
plot(k)
```

```
# Run a Markov-Chain Monte Carlo analysis
# (with default parameters)
kmcmc(k, chains=5)
```


This package and its source code is free and available on GitHub: anyone can download it and modify it freely...

http://github.com/stefano-meschiari/Systemic2

Teaching & Outreach

One could use the "full" Systemic to let students analyze exoplanetary data, but its interface can be overwhelming...

00		Systemic 2	w ^a Quartz 2
🛛 🛪	• 0	Ready.	Minimize 🔻
	+	<pre>rype tutorial() to view a brief tutorial. => kremove.data(k, 'all'); k\$mstar <- 0.950000; k\$epoch <- NaN; kadd.data(k, c("./datafiles/HD115617_AAT.vels", 10 </pre>	eriod of planet 1 vs Period of planet 2
# Planets Star mass [M _o] Epoch [JD]	3 0.95 2453369.16	<pre>"./datafiles/HD115617_KECK.vels")); => kminimize(k) [1] 10.60109 => b_1 <- kmcmc(k, chains=2, R.stop=1.1, skip. first=1000. discard=k\$nrparst10. print=TRUE)</pre>	
Chi ² _{RV} RMS _{RV} [m/s] Jitter [m/s] # RVs	1759.78016 2.16691 2.04813 183	Final length: 5236, final R_max = 1.065146e+00, final Rsingle_max = 1.488546e-01 # mcmc, chains = 2, R.stop = 1.100000e+00, start = perturb, noise=TRUE, skip = 1000, discard = 170, tot. length = 10472	
Chi ² TT RMS _{TT} [d]	0 	<pre>plot(b_1, type='scatter', px=list('par','data.noisel'), p y=list('par','data.noise2'), dev.factor=5, pch='.', xlab= 'Jitter, AAT', ylab='Jitter, KECK')</pre>	37.80 37.90 38.00 38.10
# TTs	0	III ORBITAL ELEMENTS -10	Period of planet 1
Chi ² reduced -Log likelihood	10.60109	Planet 1 × Planet 2 × Planet 3 × Phase Period [d] ● 38.03334 ▶ ● 4.21492 ▶ ● 121.55729 12 F	Quartz 3 [*]
KS p-value # Data Norm. par.	3.6982e-13 183 17	Mass [Mj] 0.05754 0.01702 0.06255 10 206.54303 0.166.00596 0.024007 10 10	Jitter, AAT vs Jitter, KECK

User interface (Java)

High-level language (R and packages)

Core code: C library + some Fortran code

User interface (Java)

High-level language (R and packages)

Core code: C library + some Fortran code

Best installation experience is no installation.

The Web

Systemic Live

A simplified web app for modelling exoplanetary data, at the just the right level for high school & undergraduate classes.

Systemic Live

Works on smartphones and tablets, too.

http://www.stefanom.org/systemic-online/?sys=51peg.sys

Systemic Live

It's easy to share a planetary model using just the current web address, like so:

http://www.stefanom.org/systemic-online/? sys=51peg.sys&np=1&P1=4.230799&M1=0.466 4769&MA1=283.9293&E1=0.0140892&L1=34 4.9533&o0=7.410511&o1=0.3495096&im=0 "The online Systemic Console is a real gift to the community. The online console distills years of work to optimize the modeling real radial velocity data. Students can run bootstrap Monte Carlo codes to determine measurement errors and numerical integrations to determine the dynamical stability of multi-planet systems. I use this site to train both undergraduate and graduate students – they love the power of this program."

Debra Fischer, Yale University

"Systemic is simple enough to use that it can provide a hand-on 'virtual lab' for a large general education class, [...] students can get a taste of the scientific process even before they learn to program" –

Eric Ford, Penn State

"I have used Systemic for several years in my class for advanced undergraduate physics majors. The students favorite problem set uses Systemic to explore real radial velocity data sets and compare their solutions to orbital parameters for published systems. Systemic is extremely sophisticated, but easy to use, so it allows students to get a feeling for the tools used in real exoplanet research."

Jonathan Fortney, UC Santa Cruz

Tutorials & labs

You can find tutorials and labs on the webpage: http://www.stefanom.org/systemic-live/

- "51 Pegged: Rediscovering the First Exoplanet"
- "A Fish in a Barrel HD 4208b"
- "The Ups and Downs of Ups And"
- ...and others

I'm also working to connect existing exoplanet "databases" (exoplanet.eu, exoplanet.org, etc.) with Systemic, so that with a click you can access and analyze the data associated with a system.

HOWTO

My biased recommendations on getting it done, as a busy astronomer who's eager to learn new valuable skills and do some outreach in the process.

https://github.com/stefano-meschiari/Notes

Presentational part: Structure, Layout and Appearance

SYSTEM:	14Her.sys 🗸 Optimize fit 3	Systemi	ic Live 🗸
	RADIAL VELOCITY RESIDUALS PHASED RADIAL VELOCITY DYNAMICS	STATISTICS]
	150	Chi ² _{red} 331.72 RMS [m/s] 65.53	
		Jitter [m/s] 65.24 Data 2 sets, 179 data points	
		Star mass [M_{sun}] 1 Epoch [JD] 2449464.5956	
		Dynamical integration	
	dial veloc	TELESCOPE OFFSETS	
	gg −50	0	
	-100	0	
	 -150 2,449,500 2,450,000 2,450,500 2,451,000 2,451,500 2,452,000 2,452,500 2,453,000 2,453,500 Julian Days [d] datafiles/14Her_1.vels • datafiles/14Her_2.vels • RV signal 	PLANETS	
	POWER SPECTRUM	ORBITAL PLOT	
	80		
	70		

Presentational part:

Learn the very basics of HTML5 and CSS.

You should start grokking this stuff anyway if you're making your own webpage (see Chalence's talk). HTML defines the structure of the page, CSS its appearance (roughly).

Recommendation: the **Mozilla Developer Network (MDN)** is really great place to start. Unfortunately, a lot of bad/misleading resources bubble up Google searches (*cough* W3Schools *cough*), so beware.

Presentational part:

Make a framework do most of the work.

A framework takes care of a lot of things that are objectively complicated even in modern browsers, like complex layouts, components, smoothing over browser differences, and more. They are usually pretty quick to learn and give your projects a professional look.

Recommendation: **Bootstrap** or **UIKit.**

Making online web apps Interactivity/computations

0 0 systemic.js (/Users/sm52286/Projects/SystemicLive/js/systemic.js) 944 var optimize = function() { 945 var active = false; 946 for (var i = 1; i <= K_getNplanets(k); i++) {</pre> 947 for (var j = PER; j <= LOP; j++) { 948 if (\$("#elementSel_" + i + "_" + j).is(":chec K_setElementFlag(k, i, j, MINIMIZE+ACTIVE 950 active = true; 951 952 else 953 K_setElementFlag(k, i, j, ACTIVE); 954 955 956 Optimize fit for (var $\underline{i} = 0$; $i < MAX_SETS$; i++) 957 if (\$("#offsetSel_" + i).is(":checked")) { 958 K_setParFlag(k, i, MINIMIZE+ACTIVE); 959 active = true; 960 961 else 962 K_setParFlag(k, i, ACTIVE); 963 964 if (!active) { 965 alert("You need to have at least one parameter se 966 checkboxes next to each parameter.)");

return;

var chi2 = K_getChi2(k);

967

968 969 970

971

Interactivity/computations:

- Learn JavaScript.
 - JavaScript superficially looks very similar to C or Java.

```
function square(x) {
    return x * x;
}
var x = 2;
alert("The square of" + x + " is " + sqr(x));
In reality, very different conceptually and
functionally.
```

Interactivity/computations:

Learn JavaScript.

In many ways, it's an evil, evil language. At the same time, *only* language allowed on browsers (no C/Fortran/IDL/Python/Perl/ Ruby/anything), so it's an incredibly valuable skill.

This is probably the hardest component to learn correctly.

Interactivity/computations:

Interactivity/computations:

Recommendations:

 JavaScript: the Good Parts is brief, clear and warns you about warts & pitfalls of the language.

Interactivity/computations:

- JavaScript: the Good Parts is brief, clear and warns you about warts & pitfalls of the language.
- Mozilla Developer Network is a useful reference for JavaScript as well.

Interactivity/computations:

- JavaScript: the Good Parts is brief, clear and warns you about warts & pitfalls of the language.
- Mozilla Developer Network is a useful reference for JavaScript as well.
- Again, frameworks and libraries can lessen the pain and make you more productive. JQuery and Underscore.js have taken a lot of the friction out of interacting with the webpage elements for me.

Interactivity/computations:

- JavaScript: the Good Parts is brief, clear and warns you about warts & pitfalls of the language.
- Mozilla Developer Network is a useful reference for JavaScript as well.
- Again, frameworks and libraries can lessen the pain and make you more productive. JQuery and Underscore.js have taken a lot of the friction out of interacting with the webpage elements for me.
- Node.js is a way to run and test your JavaScript outside your browser.

Interactivity/computations:

Recommendations, part deux:

 Emscripten is a fabulous way to translate complex but trusty C (Fortran) code into Javascript code. You literally could just change this command:

make MyProject

into this:

emmake MyProject

and you would get Javascript (instead of machine code) as the output.

Systemic Live

Science Teaching & outreach

Any improvement to the scientific software goes directly into the teaching & outreach code.

Plotting:

Lots of very different approaches.

I tend to prefer more limited libraries that are "turn-key", i.e. do not require to learn a whole different paradigm just for plotting some data. E.g. just specify that you want a scatterplot, provide the data and go.

Recommendation: Highcharts (free for edu)

One more outreach thingy

How do you reach people that are very enthusiastic about exoplanets, but don't have the technical skills, or patience, or interest in looking at real data? How do you reach people that are very enthusiastic about exoplanets, but don't have the technical skills, or patience, or interest in looking at real data?

We have all this really good code and a way to port it on the Web, so what do you do?

How do you reach people that are very enthusiastic about exoplanets, but don't have the technical skills, or patience, or interest in looking at real data?

We have all this really good code and a way to port it on the Web, so what do you do?

Make a game!

Click on the type of body to add next:

Earth	ו		1x
Supe	r-Earth	ı	5x
lce gi	ant		15x
Giant	: planet	:	300x
Brow	vn dwa	rf 🖪	000x
Dwai	rf star	30,	000x
•	•	Ц	۵
He	elp	End	Game

Click anywhere to add a planet.

Years: 0.0/500 Points: 0 2 / 12 bodies Crowdedness bonus: 1.0x Habitability bonus: 1.0x Central star: 1.0x Speed: 3x

Planet 1 (1.00 M_{earth})

	Name	High score
1.	Ben	51,256,990
2.	Rachael	31,585,152
З.	Ben	28,164,173
4.	Augusto	23,419,920
5.	Ben	22,753,808
6.	Augusto	20,448,158
7.	Ben	17,863,445
8.	Mike P	17,768,522
9.	Mike P	17,675,722
10.	Rachael	17,439,645

Click the Help button for rules.

http://www.stefanom.org/spc

http://www.stefanom.org/spc

user: baesm password: baesm

My next goal is for the game to be able to use interesting compact multi-planet systems (e.g. Kepler-11) as the starting templates, so the player can mercilessly destabilize them by adding planets.

Thank you!

All things Systemic: http://www.stefanom.org/systemic

Play with this game and beat your fellow astronomers: <u>http://www.stefanom.org/spc</u>

user/password: baesm

Here is a list of all the tools I mentioned in this talk (with links): <u>https://github.com/stefano-meschiari/Notes</u>